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ABSTRACT

We present here an extension of Hagstrum's model for the interpretation

of ion neutralization spectra. We take into account the fact that the

neutralization process depends on both the density of states and the orbital

size and takes place continuously at all surface-ion separation distances at

which the ion and metal orbitals overlap. The model is applied to the calcula-

tion of the density of states of the Ni(lIl) surface.
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I. INTRODUCTION

It has been demonstrated by Hagstrum that ion neutralization can be
1-4

used to probe the outermost layer of a solid surface. This is experimentally

achieved by exposing the surface to a low kinetic energy (10-100 eV) ion beam.

The ions are neutralized by a two electron Auger process, which causes

electron ejection from the surface. The kinetic energy of the ejected

electrons contains information about the electronic states of the surface.
5-7

The development of metastable quenching spectroscopy has increased

the interest in ion neutralization spectroscopy by extending it to very low

(i.e. -0.05 eV) incident kinetic energies. This technique exposes the surface

to a thermal beam containing ground state and metastable noble gas atoms.

Under certain conditions (i.e. when the work function of the surface is larger

or only slightly lower than the ionization potential of the metastable) the

impinging metastable is ionized by resonant charge transfer to the surface.

The resulting noble gas ion collides with the surface and generates an ion

neutralization spectrum.

The interpretation of IN spectra is based on a simple model proposed

by Hagstrum,2 ,4 which expresses the spectrum in terms of a convolution of the

electronic density of states with itself. In certain cases it is necessary

to extend this model to include the matrix elements of the Auger neutralization

process and the motion of the incident ion. In this paper we provide such an

extension, which is simple enough to be a practical tool for the interpretation

of the IN spectra. The model could also be useful in the analysis of other

surface science techniques in which ion neutralization plays a part: electron

8stimulated desorption (ESD), electron stimulated desorption ion angular

9 10 a edistribution (ESDIAD), secondary ion mass spectroscopy (SLIMS) and others. 1

°. ° . • .. . . . ... . .. . .°. . . .. •. .. . . . •.°.. ° .
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II. THE MODEL DESCRIBING THE AUGER NEUTRALIZATION PROCESS.

II. I. The Curve Crossing Description.

The Auger process is simply described by the curve crossing model explained

below. The orbitals involved in the Auger transition are shown in Figure 1:

$i is the singly occupied orbital of the impinging ion, q and are the

orbitals containing the t-wo metal electrons involved in the transition, and

k is the metal orbital (located above the vacuum) to which the ej.ected

electron is promoted. In the initial state (Figure la) there is a hole in

T and k is empty. In the final state . and.'q have a hole and ' and

are doubly and singly populated, respectively

To describe the energetics of this system we use the energy of the ground

state metal plus that of the neutral atom at infinite distance from the

surface, as a zero energy reference. Within the one electron picture

discussed above the initial state energy is ei(z), and the final state energy

is + eV + Ek + V(z). Here V(z) is the energy of interaction bet-ween the

neutral and the ionized surface when they are separated by a distance z,

and e. is the energy of the orbital .

The energy conservation condition for an Auger process taking place when the
ion is at a distance z from the surface is

E + E + e + V(z) = E ) (1)k V

We note that it is not necessary to use the one-electron energies to describe

this system. The quantity £i(z) - V(z) E 1(z) can be replaced by the

ionization energy of the atom located at the distance z from the surface;

+ E+: k can be replaced by the total energy of the excited, positivelv

charged metal surface (denoted (Me) k)created by the Auger neutralization.

The dependence of the initial and final state energies on the particle

surface distance is schematically plotted in Figure 2. The upper curve,

cailed in what follows the ionic curie, represents the interaction energy

. . . .. .

. . .' • - . . . . .. .
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of the metal-ion system (Me+A +), which is dominated by the image force at

longer distances and is repulsive at shorter ones. The lower curve, called

in what follows the neutral curve, is the energy of the neutral atom inter-

acting with (Me+) . The neutral curve has a much weaker distance dependence

than the ionic one.

The sepa-ration between the curves, called here the energy mismatch, is

A ,(z) = I(z)-E k-a (2)

We introduce the notation a = E +F since the energy mismatch depends on a

only, not on e and E separately.

If we assume that the interaction energy between the atom and (Me )

is independent of E and e (at fixed £k), then the neutral curve is highly

degenerate: there are,

N, /" dE f dE V ()( ) (E +E -a)

states having different E and E , but the same a. One of the models proposed
1.4

by Hagstrum assumes that the Auger process takes place at fix a=ac and the

number of Auger electrons having energy k is proportional to Nk,0..

Deconvolution of the Auger spectrum can therefore provide the density of

states )(E).

If we consider two values of a, namely a' and " (and fix Ek), we generate

two neutral curves as shown in Figure 3. These curves have different

asymptotic energy mismatches-",') and ., ,,( ) equal to I(o)-a --k and

k, respectively. They cross the ionic curve at two different points

Z(a') and Z(a"), which can be obtained by solving the equation

-k,a(Z(a)) =[Za ):k.= 3 .

for a-a' and 2±r".

-%...
.-• : .-, ..." . .-., ." . -..-.- , '. .. -" .. . ..-. -.' .... -. .-.. ..- -.-.. ......". .".-. ..-". -....- ,.. ,. ..- ,... ..- '....... . ...' , . .". ..-., . . . . . ..- .- . .
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Since the Auger neutralization process,generating an Auger electron with

kinetic energy Ek can take place for all the nettral curves that cross the

ionic one (i.e. for which the equation Ak, (z)=O has a solution) we must,

in p-rinciple, consider the whole family of neutral curves labelled by c.

Thus the ionic curve interacts with a continuous band of neutral curves,

which are schematically drawn in Figure 4.

II. 2. The ionization rate.

The simplest model for the computation of the rate of production of an

electron with energy Ek uses the Golden Rule formula

W k(a) = (2r/-n) f dc / dE V H(Ek,E ,E ;Z(C)) 2 (E )C(E )O(E k

(4)
(!- -€ - k ) 5(c±- -£ )
CA. I \k V

We consider here only one neutral curve -a, which crosses the ionic curve

at z=Z(ct), where the ionization potential is I =I(Z()). One of the

5-functions in Equation (4) keeps only those values of e and £ that add

up to a; the other enforces the energy conservation specified by Equation (1).

The matrix element H(£k, ,£ ;Z(a)), for which we use the notation H when

an explicit designation of the variables is not necessary, will be discussed

in Section 11.3.

As the ion approaches the surface on the trajector-7 z-z(t), it passes through

various crossing points Z(a), corresponding to various values of a. By using

z(t)-Z(a), where Z(a) is the crossing point for curve a, we can find the function

a(t) giving the curve being crossed at time c. The probability ?k (t) that an

electron 3f kinetic energy gk is produced at time t (i.e. at the position

z(c)=Z(a) where the curve a(t) is crossed) is given by

Pk(t) = p(z(t))4pk Wk( (t)) ; (5)

where ;z(t)) is the probability that the ion reached the point z(t) without

being neucralized,9 is the probability that the Auger electron escapes into

. , -. .. . . . . _ . _ . . , , . - : : _ ,: : :: : : . i :. :: , : :; : . . . .. --- : _ :" : _:%:



the vacuum, and W k(t)) is the rate of electron production given by Equation (4).

The survival probability p(z(t) is given by the rate equation

dpz(t')
dt -W(a(t)) pz(t)) (6)

where

W(a) k dkWk(X) . (7)

Assuming that we know the trajectory of the ion we can write the finite

difference version of Equation (6) as

p(zi~l) - P(zi) = -W(ai)P(zi)v 1 (zi+l-z) (8)

where z. = z(ti), = a(t i), vi = dz/dtit t and the points ti form a Line

grid on the time axis.

The above equations provide a computational scheme for the probability

of generating an electron with kinetic energy Ek' after the incident particle

has completed its trajectory. To start, we must provide an equation of motion

md 2z/dt 2 - F(z) (9)

to propagate the ion and generate its trajectory. The force F(z) is discussed

in Section 11.4.

To compute W(ai), which is needed in Equation (8), we must make a model
3..

for H(&k,- , ;zi), use it in Equation (4) to compute Wk(CLi), which is then

used in Equation (7) to compute W(ai). We can now solve Equation (8) to obtain

the survival probability p(ti), then use an empirical formula for the escape

probability k, and calculate, from Equation (5), the probability ? (t.) that

an electron of energy £k is generated at t i Adding up over all the times,

Nk = Z P(t i) , (10)

Ii

we obtain the probability Nk that an ion generates an electron of kinetic energy

.. Tfhis is the computed IN spectrum, which can be compared to the
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experimental results (after removing from the measured spectrum the contribution

form the secondary electron emission) to determine either the density of

states that best fits the data (if one has a reasonable model for the matrix

element H) or to get the matrix element (if the density of states is known).

II. 3. The relationship to previous work.

Since the present work is an extension of that of Hagstrum it is useful

to show explicitly the connection to his model. To do this we must make

several approximations. First we assume that the rate of electron production

is dominated by one of the curves of the family labelled by :, namely that

corresponding to a-cLo . This reduces the problem to a single cur-e crossing

(Figure 2). This approximation is reasonable only if Wk (a) is very small for

all <a 0 and has a large increase at a , such that the probability of havingO O0

been neutralized for z>Z(a ), and the probability having survived as an ion
0

for z<Z(a ), are both minimal.
0

Under these conditions the rate W of production of an electron of energy

k is proportional to

S ) jdE dE HI 2  (E )((1 ) (I) 5 (Ii)k k l V1k)  d a 0 -k (o -1 v
0

where a is the only value of a which we need to consider.
0

If we assume that o(Ek ) is independent of Ek and that H(, ,, "Z,' ))

is independent of £ , and we can write that is proportional to

- K (12)

with

F. (l(Z(ao ) )  -iE, ) / 2  (13)
K ~0

Thus the IN spectrum generated by this model is the convolution of the density

of states with itself; the use of a deconvolution program can supplv Z(),

if is measured. I H and L(t. ) depend strong!: on ,E and ,, we can define

.1

. .. . m,',..*,,-,, , ~ m- , n nln i
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0 () I (Ek P/2 (E) (14)

and use

fH P (Ek-1-) 0 (Ek- 6 ) da (15)

Clearly Equation (15) is less useful than Equation (12) since it provides only

the product of various quantities which are of interest individually.

II. 4. The model for the matrix elements.

The assumption made in Hagstrum model that the matrix element H is

independent on E and e is likely to he inadequate, the nature of the surface

orbitals changes with the orbital energy. Consider, for example, the case

of a metal that has two bands A and B: A is narrow and its energy is larger

than that of broad band B; furthermore, the orbitals of A are localized

tightly around the metal atoms, while those of B reach further in space. (This

is consistent with the fact that the band A is narrower than B). Such a

situation appears in the case of Ni, for example, where the 3d band corresponds

to band A and the s-p band to B, and the 3d orbital are much tighter than the

s ones.

If we were to apply Hagstrum model to this system we need to consider two

distances, Z A and ZB, corresponding to the distances at which the band A or B,

respectively, neutralizes most efficiently the hole in the incident ion. Since

the orbitals of band B reach further in vacuum than those of A, the distance

-B is larger than Z . As the ion approaches the surface it will first reach

ZB and the Auger neutralization can occur by electron transfer from 3 to the ion

and electron ejection from either B or A. We denote these processes as BB and

BA , respectively. The surviving ions can then reach Z, and be Auger neutralized
A

by electron transfer from A to the ion and electron ejection from either A or 3

(processess AA and LB).

S . ~. . . • .. . . .. ,. .. .. . . . ,.,. -
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The shape of the IN spectrum is influenced by the difference in the spatial

properties of the orbitals. At the distance Z the BB process generates
B

electrons in the kinetic energy range (See Figure 5).

I(Z B ) - 2cI < £k!lE )  '
I B 2E1 < k < I(Z B 2z

and AB in the range

1 (Z -: < C < I(Z -: -E
1 2 - k2 F

At the distance ZA the kinetic energy of the ejected electrons is in the range

I(ZA) - 2 2 < -k < I(Z A - 2E F

for AA, and

I(Z )-- <-2
I A 2- E-1< k < IZA)EF-

for BA. These ranges are schematically shown in Figure 5.

If, for example, the density of states of the B band is very high (and

much higher than that of A) we expect BB to be very efficient and AB moderately

efficient. Furthermore, most of the ions are neutralized at Z and very few

reach ZA . For those that do, neutralization by the BA process is more efficient
A

than A.A. The resulting IN spectrum having a very intense BB emission, a weak

A.B one, and an even weaker BA one, is schematically displayed in Figure 7 as

a fu2. line. If, for example, the band A reaches far in space and has a high

density of states, the spectrum is dominated by the AA process, has a weak

3A component and an even weaker AB. The resulting spectrum is shown schematicaily

by the dotted lines in Figure 7. Clearly the shape of the spectrum is affected

by both the density of states and the snatial extent of the orbitais forming

the bands. The latter element is missing in the Hagstrum model.

A quantitative evaluation of the Auger matrix elements is -;ery difficult

since the relevant electronic wave zunct:ins are -hose of the surface in :he

tresence or :he neutral or the ion. For this reason we intend to pursue the
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2 rT--a z r

V 0

e f or 0 (AlI
2

Integration of Eq. (A17) gives the following formula for th'e :NS

matrix element for an incident ion at a separation distance z

from the metallic surface plane

21)2 c CkCVC I
-H~.z) 2 r)~ e- (z-T)e -(a -X))'

-1 (Z(-- 8fi ~ ~ ~ o A- P ' - -- ) ) "(A 8

z 1 1 1 e -(a -a )zF 1 1

L a L

f r

for :> X. 0 ,g (a:-X) > 0, and z > '

II I

3

. . ,... . . . . , ..,:.: : . : . .: .-. .: . - . 3 , . :- < -. : , - . -. ,. - -- . .-
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H- z- -I (wz-W) :- ( - - e-k z )(z (2T)-C 2 d4e' odpe ' ~~ e

V 0 0

for a > V > 0 (A13)

Now the focus of attention shifts to the inte-ratioi over

the variable o. We define the following variable transformation

-2 2 1/2
p and g = (t-w /  (A14a

and thus

- - 2 1/2
dt = 2pdp and dg = dt/[2(t-w 2) I / (A14b

which gives

dt = 2gdg (AI4c

Thus the integral over the variable p becomes

2_ 2 1/2 0_

4dp p e - = 4 dg g e-9(A15)
0

Integration of Eq. (A15) by "parts" gives

: dg g e = for > 0 -116
2

Substituting the result of Eq. (A16) into Eq. (A13). we obtain

the following integral expression for the INS matrix element

: " " " "':" " '" :"-'.'.""""-.."..'.....-.-.."..."'"." ".-...."-".."....."-"-...-
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zero .

We begin to evaluate Eq. (A9) by concentrating on the
3

integral over the variable p. We first define the following

transformation of variables

2 2 1/2
= (z-z'-W) and q (p ) , (AlOa)

and therefore

dq = p(p 2-g) - /2dp (AlOb)

Through the use of Eq. (AIO), the integral over the variable p

becomes

/2 dq e -k _ % for . > 0. A I

We proceed by evaluating the integral over the variable z

incorporating the result given in Eq. (All)

-eaNz-)) z -(z- )Sdz 'e -  -  z - 7 for a > % > 0. (A.12)

0 X a( X- ) 1

Substituting Eqs. (Alo) through (A12) into Eq. (A9), we obtain

the following expression for "he INS matrix element

p

i:.::. 2 >-ii . . - " " ... ..... . -.-...-- •, " - '_ . .- ... . .



19

metal surface completes the integration over the variable r2 and

gives the screened Coulomb interaction between the metallic

conduction band wave function di(r ) and the ground state ion

wave function iji (rl) at the point Q with the metallic conduction

band wave function r (r 2) over the entire vacuum region

2 e_ ( 22~12 z z

-2 2 )1/2a Z)0 Z
dV Q-2rCe e P S dz ' e v

0

0 e- %[p2_(z z,_W)2]1
1 / 2

2x2 1/

e 2 2 1/2, pdp A8)
o [p -(z-z-w) I

We now proceed with the integration over the variable r

We must contend with both the spherical geometry of the ion

grrund state wave function and the "planar" geometry of the

metallic conduction band wave functions. Once again the

cylindrical coordinate system is the system of choice. Thus the

form of the integration over the variable r is identical to the

previously employed in the integration over the variable r 2' The

integral expression for the rNS matrix element thus becomes

2 -- - o Cz -W )'-2- 2 1,2 ~ -

2r Cjdwe c W dpfdz~e
0 0 0

2 2 11/2
o op -(z-z'-w) ISe I pdp

0 [ 2_ _ ,W 2 1/2

where I .s introduced to truncate the integral as the separation

distance between the ion core and the solid surface approaches

- " . - . . - . . •. . -.
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width dp located on this z = z' surface. The surface element

contained within this annulus is (2,rp)dp. All points residing

within this annular surface element are equi-dlstant from the

axial point Q. Thus the screened Coulomb interaction between the

component of the metallic electronic wave function V(r2

contained within the annulus and the elements of the ground state

ion wave function 4i(r ) and the metallic electronic wave

function $,(r at the point Q is given by

~~(~-2 2 1/2 2 2 1,2 z - (z-

dV Ze -A(P -W -X(p -Z-'-W) e- -(VZa -aP(Z W 1-I- 'Cee e ~Ie .± od
dV

z' ,Q , 2 - (z z'W) 2 1/2,

(A6

Where C is defined CiC C C . Since we appro%- mate the wave

function of the excited metallic electron to be constant over all

space. its presence in the INS matrix element formula is denoted

simply by Ck. The screened Coulomb interaction between the wave

functions $i(r and D (rI at point Q and the metallic qave

function P V (r 2 ) contained in the entire plane z = z' is obtained

by integrating Eq. (A6) over all the annuli of which the surface

rxy.z') is composed

-(X z - z -W 2 _ 2 1/ 20 e-N[ 2 ( Z' W 1 2- -a.z' -a (z-. ) - (p -w2)I/2 -k~p2-(z-z'-)-KV

jV Q = 2 rCe e e odP
z .o 2 - -l 2

(A7 1

:ntegracion of Eq. (AT) over all possible planes paralel t
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Fig. 11. The wave function for the incident helium ion is an

exponentially decaying function maximized at the position of the

ionic nucleus

'Ki = Ci exp(- r) prA3

The electronic wave functions of the metallic conduction band

have been modeled to decay exponentially in the vacuum region

according to the following form , Cj exp(- jz) for z > 0.

Thus points of equivalent metallic wave function amplitude form

planes parallel to the surface of the semi-infinite metal slab.

We focus on the plane located at z = z'. The amplitude of a

metallic wave function at any point in the (x,y.z = z') plane is

denoted 4, = C, exp(-a z'). The geometry associated with the

metallic wave functions suggests the use of a cylindrical

coordinate system. In this cylindrical coordinate system, the

wave function for the incident helium ion becomes

-2 2 1/21pi = Ci exp[- (p W ) / ] (A4)

while form of the metallic wave functions remain unchanged. Thus

the screened Coulomb potential acquires the form

2 1p 2/ P ,'2 2W(r -r ) exp{-[ -(z-z*-W)] , [p-(z-z- )11 2

(A5)

We consider an infinitesimally thin annulus of radius o and
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APPENDIX A:

An Outline of the Derivation of the. INS !-atrix Element

In order to evaluate the integrals appearing in Eq. (1

(and thus the matrix element associated with Auger

neutralization), we consider a physical system composed off a

semi-infinite metallic slab occupying the half-space (x.yz<O1

and an incident noble gas ion at the position (0.0,z).

The matrix element cbaracterizing the Auger neutralization

process is

e , e :z) =4 dr d~ r , r ) (r rW' r~ )i r.k' V U1 2 I 1 1, 2 W 1 2 V 2)',,

(A

where integration is performed over the spacial coordinates of

both th e neutralizing electron (r and the ejected electron

f r 2) The interaction coupling th e two parzicipating elect:rons

:s modeled by a screened Coulomb potential of the Yukawa fform

W( r -r )=exp(-% r,-r ),(' r A2)
1 2 1L 2 1 2

where -he inverse screening length assoclated with the mietal If

electron density in the vacuum region is denoted by ',he symbol '

A schema!_tc representation off -he physical system is displayed n~
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quenching spectroscopy can generate with ease IN spectra at low incident

kinetic energy. The extension presented here is necessary when the orbitals

of various bands have different spatial extent, so that the Auger process is

controlled not only by the density of states but also by the relative orbital

length scales.

It is generally true that the two electron spectroscopic methods measuring

convolutions of the desired quantities are at a disadvantage when compared

to their one electron competitors, since some of the details might be lost in
r

the deconvolution process. However, if interpreted carefully IN can be a

useful complement to photoelectron spectroscopy due to its extreme surface

sensitivity.
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Most other spectra have a low energy peak.(b The Ni 3d band has a high

density of states and a short spatial extent, while the s-p band has a low

density of states but extends further. This situation should cause difficulties

in the Hagstrum model, but not in ours. A computation will establish how

serious these difficulties are.

The parameters used in the calculation are given in Table I. Since the 0

constant Ck, CiC ,C are unknown we can only calculate the shape of the

spectrum. This is not a shortcoming since the experimental measurements do

not give the absolute intensities. The calculation is used to find the 0

density of states that best fits the IN data. To do this we express the

density of states as a sum of many Gaussians with unknown parameters which

are varied to minimize the difference between the computed and the measured 0

spectrum. The minimization is automated: a subroutine generating the IN

spectrum, according to the method outlined in Section 1I, for a given set of

Gaussian parameters is used in a Fletcher-Powell minimization program which •

varies the parameters until the best least square fit is obtained.

The best fit of the Ni(lll) IN spectrum is shown in Figure 8. The

discrepancy at low kinetic energy is perhaps due to the presence of secondary

electrons in the experimental spectrum. In Figure 9 we show the best density of states

(full line) as well as that obtained with the Hagstrum model. In Figure 10

we show a comparison between the experimental IN spectrum and a calculation

using the best density of states and making the assumption that ion neutralization

takes place only at the ion surface distance of z-2.4A. The error introduced

by this assumption is large enough to give a visibly worse fit than the full

model.

:V. STUR RY"

In this paper we have developed a practical method for the analysis

of ion neutralization spectra. This was stimulated by the fact that metastable

. . . . . . . . .. -= .
.. . . . .~~~~~~~- . . . . . . . . . . . . .. . . . . . .. . . . . . . . . . .. . . . .



alone. The attractive part of the force is given by the image formula

F (E-13(E+l) 5.76x10 -20 qz- 2  (19)

where F is the dielectric constant of the metal, q is the ion charge and z is the
0

ion surface distance in A.

II. 6. Electron escape probability.

Finally, the last quantity needed for the calculation of the Auger

spectrum is the escape probability ?(Ek) for which we use a semi-empirical

formula (Equation (B.4) of Appendix B) proposed by Hagstrum, with the

parameter f equal to 2.2.

III. NUMERICAL STUDIES OF THE He +/Ni(lll) SYSTEM.

We have used the model outlined in Section II to analyze the IN spectrum
6 7

of the Ni(lll) surface, obtained by metastable quenching spectroscopy. The

method probes the surface with a thermal beam of neutral He and excited

(metastable) He (2 S) atoms. The metastable is resonantly ionized by the surface

and the He+ ion is Auger neutralized when it collides with the metal. Since

resonant ionization is a long range process and Auger neutralization is a

short range one we assume that we deal with a two step process: first

resonant ionization, then ion neutralization. In this case the resulting

IN spectrum is the same as that obtained with a low energy (-0.05 eV) ion in

beam.

To compare the experimental and the computed spectra we must remove the

secondary electron emissiaifrom the data. In spite of the existence of
16

several experimental studies of secondary emission, it is difficult to

perform such a subtraction accurately. Because the precise shape and magnitude

of the low energy part (z < 5 eV) of the IN spectrum is somewhat uncertain, it

was not included in our optimization calculation.

There are several reasons for choosing Ni(lll) for this study: (a) its

:N spectrum has a peculiar form, with a peak at high electron kinetic energy.

,. , . , -'_ . - . _- - -: . . .. . ., , . . . . ,. ...
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i(r) C. exp(-Br), given in spherical coordinates with the origin of the

coordinate system at the center of the ion. Since the ejected Auger electrons

of interest in IN have a kinetic energy of -13 eV or less, their De Broglie

wavelength is larger than the size of the ionic orbital '. which determines

the integration range in Equation (16). Therefore, we can take ,k(r) t-o
k

be a constant C k ' The screened potential is taken to be of Yukawa form

ix ) = exp(-X-x x))/(-1U. We have also used

W(x12- 1 1) (X 2- 1  -i and the results obtained with the :wo equations are

very similar.

The calculation of the matrix element is outlined in Appendix A. The

result is

(2Tr) 2C C C vC
- (nk, , ;z) = " ' {exp[-8(z-y)-(L -~-)I

[(z+y) + (-,'; -X)-l +- 1 ] (18)

1 -

-exp(-(a +X)z] [(s-a -X) -1 - 1

This equation is valid for a V >X>o, 6>(a -X) and A>y (see Appendix A). HereThs aaton s aldfo V , 4

is a cut-off distance which is the ion's closest possible approach to the

metal surface.

II. 5. The trajectorv of the incident ion.

At low kinetic energy it becomes difficult to choose a proper trajectory
15

for the ion. This is a general problem for all curve crossing models. The

system is simultaneously on curve one and two, with a given transition amplitude

for each event. Therefore neither energy surface is providing the force alone

and the total force in the correct equation of motion for the ion must depend on

the gradients of the two potential energies and on the probabiliry amplitudes

15describing the occupation of the two electronic states. in spite of this we

use here an equation of motion corresponding to the motion on the icnic surface
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simplest possible model in which the orbital lengths of various bands is

qualitatively incorporated.

The matrix element character-izing the Auger neutralization 
process is12,13

H(k, E , ;Z) d dr2 i(r2 ) .k(rl) W(Ir -r2 ) ( (16)

kP f d1 2 dr 1 2 1 2)v(1) i 2 (6

where the orbitals 4,ktp, were defined above and W(;*I-72 ) is a

Coulomb interaction between two surface electrons.

Since electrons are indistinguishable particles we should subract an
* exchange term 13 (which is obtained by replacing * -r2)Lk\I) with 'i 1), k(r2 )

in Equation (16)) from the Coulomb term included in Equation (16). Previous
12

surface Auger neutralization work, which computed these matrix elements, has

neglected exchange. The reason for this neglect is not clear, nor is it

documented that the term is negligible. In the present context, where the main

role of these matrix elements is to take into account the fact that the orbitals

in different bands have different spatial extent, the inclusion of the exchange

term does not seem critical.

In order to model the qualitative behavior of the matrix element

H(Ek) V EP ;z) we use the following simple forms for the orbitals. The orbitals

and .u ,describing the metal atoms are taken to be

(r 1 C exp(-C z)(17)

where the constants C. and a have different values whether z- is in band A or

band B. In the case of Ni the two bands are the 3d band and the s-p one. Since

there are indications 1- 4'1 2 that Auger neutralization takes place at a
a

relatively large distance from the surface (-2A), and that at those distances

14
the corrugation of the electron charge density is very low, we neglect the

change in 2 (ri) along the surface. The ion orbital is of the form

change.
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APPENDIX B

PROBABILITY OF ESCAPE OF AN EXCITED ELECTRON FROM A METAL SURFACE

The probability((ek) for an excited electron of energy Ek to escape from

a mecal surface is given by
1'3

2rec

(3( (e,E )sin3decli (B i)a 0

where e ( k) is the maximum value of S for which escape over the surface

barrier is possible, Here Ek measures the energy of the ejected Auger electron

relative to the vacuum. If we assume that the angular distribution of

electrons is isotropic then 6P(e,Ek) is constant:

y(e,Ek) = (4ir) -  (B 2)

Substitution of Equation (B 2) into Equation (B 1) gives

1( /(C k+0)]l1/2 /2 for Ek> 0

k)0 for E k < 0

where E is the energy of the bottom of the conduction band with respect to0

vacuum. Calculations of the total electron yield using the Equation

(B 3) for(P k ) give results significantly below those determined experimentally.

This discrepancy between the calculated and experimentally determined total

Auger electron yield suggest that (?,, k) is not an isotropic function.

To model the anisotropy in the Auger electron ejection pattern, the following

semi-empirical expression for the electronic escape probability was developed

by Hagscrum
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-E -E +Eo(/ z/ - 0 S "k > 0

C0 k( 0

~(k) 0 ' - <0o

The numerical value of the parameter f can be determined by fitting the

calculated total Auger electron yield to experimental measurements. For helium

ions incident on a clean tungsten surface with kinetic energy of 40 eV,

Hagstrum gives a value of f = 2.2. Hagstrum3 finds the value of T( k) for

(Sk) > 4 eV is highly insensitive to parametric variation, so error in f do

not lead to significant errors in the computed IN spectrum.

S

0

0

.... ... ... .. ... .. .....--". - .. ..... ...... :.... .. " ',. .' .. .. ." °.. ,'. \ .. ,.._.. _- _'= - - -.. u -
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Table 1. Physical constants used for the He +/Ni(lll) system.

Helium ionization energy:

E. (isolated atom) 24.6 eV
ia

E. (Zm (a) 22.6 eV

Exponential decay parameters:

He wave function 8=3.779 A-

Vi = Cir

Ni(lll) conduction band wave functions (b)

z
-4s~o•

-4s W )  C4s e  a 4s a 0.35 A

-3dZ-

3d(z) = C3ded: a3d " 0.93 A

(C)c

Ni(lll) conduction band energetics(c):

Fermi level EF - 5.2 eV

Lower band edge ELBE -17.2 eV

(a) Ionization energy at the position of most probable neutralization.

26
(b) Decay constant of atomic nickel wave functions.

(c) All energies measured relative to the vacuum level.
3
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LIST OF FIGURES

1. Energy level diagram describing (a) the initial and (b) the final states

in Auger neutralization of the incident ion by a metal surface. The ion

is represented by the half filled orbital. The metal orbitals

1'14 and are involved in Auger neutralization. The ion surface

distance is z.

2. Two electronic surfaces describing the energy of the ground state metal and

the ion (Me + A +), and the energy of the neutral atom A and the

metal (Me+ ) *having an electron in k and holes in p and $ . The orbital
pvk k

energies are defined in Figure 1.

3. A schematic plot of the neutral curve and two ionic curves corresponding
e

to two values of (- P +C , namely, a' and a". The ionic curves have

different asymptotic energy mismatches ",a () and k, (-) and different

crossing possitions Z(a) and Z(a').

4. A schematic plot of the family of ionic curves labelled by various values

of a E % +C , which can participate in Auger neutralization.

5. A schematic description of the bands A and B and the orbital ranges

ZA and ZB discussed in the text.

6. A schematic plot of the kinetic energy ranges for the processes BB, AB,

AA and BA defined in the text.

7. A schematic plot of the IN spectrum for two situations. Full line: The

IN spectrum for ZB > ZAt FA>EB and PB>0 A (ZB and ZA are defined in Figure 5,

A and cB are the orbital energies in band A and B and oB and cA are the

density of states in the bands A and B). Broken line: The IN spectrum

for ZA>ZB, c>B and 0A>B The AA, AB, BA and BB processes are defined
A B' B AB*

in the text. The energies £F,Cl,and E2 are defined in Figure 5. 1A and

IB are the ionization potentiasof the atom at the distances ZA and ZB ,

~ ~~. ....... . .. .. . . ..... .: ...... .. ..... . ... .... b : . . ... .-. '.. .-. . ..... .-.. ..-. ....-.-.- -
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8. Kinetic energy distributions of electrons ejected by thermal helium ions

colliding with a clean Ni(lil) surface. The experimental spectrum was

7
obtained by MQS. The theoretical spectrum was computed by using the

extended model described in Section II. The density of states was varied

to get the best fit of the experimental IN spectrum.

9. The density of states of the Ni(lll) surface. The dotted line was obtained

by using the extended model and varying the density of states to produce

the best fit of the experimental IN spectrum. The full line was obtained

by using Hagstrum model.

10. The IN spectrum of the Ni(Ill) surface, computed by using the "best

density of states" shown in Figure 9 and by assuming that the neutralization
a

of the ion takes place at z = 2.4 A.

11. The coordinate system and the notation used for the evaluation of the

matrix elements.
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